11 research outputs found

    Proportional Derivative Control with Inverse Dead-Zone for Pendulum Systems

    Get PDF
    A proportional derivative controller with inverse dead-zone is proposed for the control of pendulum systems. The proposed method has the characteristic that the inverse dead-zone is cancelled with the pendulum dead-zone. Asymptotic stability of the proposed technique is guaranteed by the Lyapunov analysis. Simulations of two pendulum systems show the effectiveness of the proposed technique

    Red Neuronal Pulsante Adaptada al Problema del Camino más Corto

    Get PDF
    La solución eficiente del problema del camino más corto tiene aplicaciones en áreas tan importantes y actuales como la robótica, las telecomunicaciones, la investigación de operaciones, la teoría de juegos, las redes de computadoras, internet, diseño industrial, fenómenos de transporte, diseño de circuitos electrónicos y otros, por lo que es un tema de gran interés en el área de optimización combinatoria. En el presente trabajo se describe una Red Neuronal Artificial Pulsante capaz de atacar eficientemente el problema del camino más corto entre dos nodos. Una vez que la Red Pulsante encuentra el nodo meta a costo mínimo, se realiza una extracción o Explicitación de Conocimiento de esta Red para recuperar la trayectoria final. Debido al diseño en paralelo de la Red Neuronal aquí presentada, este enfoque de solución puede resultar altamente competitivo, según se observó en la etapa de experimentación a partir de los buenos resultados obtenidos, aún en casos con miles de nodos

    Efficient System for Delimitation of Benign and Malignant Breast Masses

    No full text
    In this study, a high-performing scheme is introduced to delimit benign and malignant masses in breast ultrasound images. The proposal is built upon by the Nonlocal Means filter for image quality improvement, an Intuitionistic Fuzzy C-Means local clustering algorithm for superpixel generation with high adherence to the edges, and the DBSCAN algorithm for the global clustering of those superpixels in order to delimit masses’ regions. The empirical study was performed using two datasets, both with benign and malignant breast tumors. The quantitative results with respect to the BUSI dataset were JSC≥0.907, DM≥0.913, HD≥7.025, and MCR≤6.431 for benign masses and JSC≥0.897, DM≥0.900, HD≥8.666, and MCR≤8.016 for malignant ones, while the MID dataset resulted in JSC≥0.890, DM≥0.905, HD≥8.370, and MCR≤7.241 along with JSC≥0.881, DM≥0.898, HD≥8.865, and MCR≤7.808 for benign and malignant masses, respectively. These numerical results revealed that our proposal outperformed all the evaluated comparative state-of-the-art methods in mass delimitation. This is confirmed by the visual results since the segmented regions had a better edge delimitation

    Real-Time Detection of Bud Degeneration in Oil Palms Using an Unmanned Aerial Vehicle

    No full text
    This paper presents a novel methodology for the early detection of oil palm bud degeneration based on computer vision. The proposed system uses the YOLO algorithm to detect diseased plants within the bud by analyzing images captured by a drone within the crop. Our system uses a drone equipped with a Jetson Nano embedded system to obtain complete images of crops with a 75% reduction in time and with 40% more accuracy compared to the traditional method. As a result, our system achieves a precision of 92% and a recall of 96%, indicating a high detection rate and a low false-positive rate. In real-time detection, the system is able to effectively detect diseased plants by monitoring an entire hectare of crops in 25 min. The system is also able to detect diseased plants other than those it was trained on with 43% precision. These results suggest that our methodology provides an effective and reliable means of early detection of bud degeneration in oil palm crops, which can prevent the spread of pests and improve crop production

    Neurofuzzy Data Aggregation in a Multisensory System for Self-Driving Car Steering

    No full text
    In the self-driving vehicles domain, steering control is a process that transforms information obtained from sensors into commands that steer the vehicle on the road and avoid obstacles. Although a greater number of sensors improves perception and increases control precision, it also increases the computational cost and the number of processes. To reduce the cost and allow data fusion and vehicle control as a single process, this research proposes a data fusion approach by formulating a neurofuzzy aggregation deep learning layer; this approach integrates aggregation using fuzzy measures μ as fuzzy synaptic weights, hidden state using the Choquet fuzzy integral, and a fuzzy backpropagation algorithm, creating a data processing from different sources. In addition, implementing a previous approach, a self-driving neural model is proposed based on the aggregation of a steering control model and another for obstacle detection. This was tested in an ROS simulation environment and in a scale prototype. Experimentation showed that the proposed approach generates an average autonomy of 95% and improves driving smoothness by 9% compared to other state-of-the-art methods

    Analysis of Different Image Enhancement and Feature Extraction Methods

    No full text
    This paper describes an image enhancement method for reliable image feature matching. Image features such as SIFT and SURF have been widely used in various computer vision tasks such as image registration and object recognition. However, the reliable extraction of such features is difficult in poorly illuminated scenes. One promising approach is to apply an image enhancement method before feature extraction, which preserves the original characteristics of the scene. We thus propose to use the Multi-Scale Retinex algorithm, which is aimed to emulate the human visual system and it provides more information of a poorly illuminated scene. We experimentally assessed various combinations of image enhancement (MSR, Gamma correction, Histogram Equalization and Sharpening) and feature extraction methods (SIFT, SURF, ORB, AKAZE) using images of a large variety of scenes, demonstrating that the combination of the Multi-Scale Retinex and SIFT provides the best results in terms of the number of reliable feature matches

    Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering

    No full text
    We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR) and fluid-attenuated inversion recovery (FLAIR) images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time

    PhotoId-Whale: Blue whale dorsal fin classification for mobile devices.

    No full text
    Photo-identification (photo-id) is a method used in field studies by biologists to monitor animals according to their density, movement patterns and behavior, with the aim of predicting and preventing ecological risks. However, these methods can introduce subjectivity when manually classifying an individual animal, creating uncertainty or inaccuracy in the data as a result of the human criteria involved. One of the main objectives in photo-id is to implement an automated mechanism that is free of biases, portable, and easy to use. The main aim of this work is to develop an autonomous and portable photo-id system through the optimization of image classification algorithms that have high statistical dependence, with the goal of classifying dorsal fin images of the blue whale through offline information processing on a mobile platform. The new proposed methodology is based on the Scale Invariant Feature Transform (SIFT) that, in conjunction with statistical discriminators such as the variance and the standard deviation, fits the extracted data and selects the closest pixels that comprise the edges of the dorsal fin of the blue whale. In this way, we ensure the elimination of the most common external factors that could affect the quality of the image, thus avoiding the elimination of relevant sections of the dorsal fin. The photo-id method presented in this work has been developed using blue whale images collected off the coast of Baja California Sur. The results shown have qualitatively and quantitatively validated the method in terms of its sensitivity, specificity and accuracy on the Jetson Tegra TK1 mobile platform. The solution optimizes classic SIFT, balancing the results obtained with the computational cost, provides a more economical form of processing and obtains a portable system that could be beneficial for field studies through mobile platforms, making it available to scientists, government and the general public

    Flatness-Based Active Disturbance Rejection Control for a PVTOL Aircraft System with an Inverted Pendular Load

    No full text
    This paper presents a systematic procedure for the control scheme design for a PVTOL aircraft system with an inverted pendular load, which is a nonlinear underactuated system. The control scheme is based on the use of angular movement as an artificial control in order to propose new auxiliary control inputs. This is achieved by a linear extended state observer-based active disturbance rejection control to reject both nonmodeled dynamics and external disturbances. The flying planar inverted pendulum is then linearized around an unstable equilibrium point, and the resulting system is subdivided into two subsystems: (1) the height system, and (2) the horizontal pendulum system. For the height system, a linear extended state observer-based active disturbance rejection control is proposed in order to accomplish a take-off and landing task in the presence of external disturbances and non-linearities neglected in the linearization process. The flatness property in the horizontal-pendulum system is exploited in order to propose another active disturbance rejection control of linear nature. The flatness of the tangentially linearized model provides a unique structural property that results in an advantageous low-order cascade decomposition of the linear extended state observer design. Numerical simulations show the effectiveness of the proposed control scheme in trajectory tracking tasks in the presence of disturbances caused by crosswinds with random amplitudes
    corecore